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LETTER TO THE EDITOR 

Characterisation of the quantum helix in Heisenberg 
models 

A Pimpinelli, E Rastelli and A Tassi 
Dipartimento di Fisica dell’Universit~,43100 Parma, Italy 

Received 3 August 1988 

Abstract. Unexpected features in helimagnets are produced by quantum fluctuations. On 
hexagonal and tetragonal lattices with competing in-plane interactions up to third-nearest 
neighbours, the zero-temperature phase diagram, obtained in the classical approximation, 
is strongly affected by quantum effects in the neighbourhood of the triple point where 
ferromagnetic, antiferromagnetic, and helical phases coexist. The ferromagnetic con- 
figuration turns out to be unstable against long-wavelength quantum fluctuations, allowing 
a novel helix of quantum origin to have its onset and the corresponding ferro-helix phase 
transition to become first order. This result has been obtained by an exact evaluation of the 
ground-state energy within Q4 contributions. However, the value of the helix wavevector Q 
cannot be obtained by such a calculation. Here we give this wavevector as a function of the 
Hamiltonian parameters by evaluating at leading order in 1/S the Q6 contributions to the 
ground-state energy. Our result is consistent with the assumption that the quantum helix 
wavevector is small. 

Competing exchange interactions in Heisenberg models are able to produce heli- 
magnetic configurations [l], The traditional approach to obtaining the phase diagram in 
parameter space neglects quantum fluctuations entirely [2]. Only recently have efforts 
been made to understand their role, and new interesting features have been found in 
tetragonal and hexagonal Heisenberg models with in-plane competing interactions up 
to third neighbours. The phase diagram of a classical Heisenberg model on a simple 
hexagonal lattice is shown in figure 1. 

A T-matrix evaluation of the ground-state energy, exact within Q4 contributions, 
where Q is the helix wavevector, has been performed along the ferro-helix phase 
boundary [3]. The F-H phase transition, continuous in the classical approximation, is 
shifted and becomes first order near the F-AF-H triple point. This calculation proves that 
the ferromagnetic configuration can be unstable with respect to long-wavelength helical 
modulations supported by quantum effects. This approach goes well beyond previous 
treatments based on an evaluation of the zero-point-motion energy at leading order in 
1/S with the classical approximation as the starting point [4]. 

Anyway, it is interesting that reliable indications from a qualitative and semiquanti- 
tative point of view of the onset of the new quantum helix can be obtained by truncation 
of the T-matrix expansion of the ground-state energy at leading order in 1/S; the values 
of the parameters at which the transition becomes first order differ from the exact ones 
by less than ten per cent for J’ = 0 and S = 1. For this reason we think that the ordering 
in 1/S is a tool that is as reliable for studying non-collinear configurations as it is for 
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Figure 1. The phase diagram of the classical Heisenberg model on a simple hexagonal 
lattice at zero temperature taken from [ 5 ] .  F, AF, H,, H* and 120" indicate ferromagnetic, 
antiferromagnetic, two helical, and the 12Pthree-sublattice phase, respectively. 

studying the collinear ones, if the value of the helix wavevector is evaluated by minimising 
the ground-state energy only after having taken quantum contributions into account. 

Insurmountable difficulties are introduced if one takes the classical stage as the 
starting point, because in this case the helix wavevector is fixed from the beginning, so 
quantum effects produce spin-wave frequencies that are not well defined [4]. 

Here we avoid the aforementioned difficulties by going to the order Q6 in the 
evaluation of the contributions to the ground-state energy at leading order in 1/S and 
treating the helix wavevector Q as a variational parameter to be determined only after 
having accounted for the quantum contributions we are interested in. 

The Hamiltonian of our model reads 
3 

where i labels the sites on a hexagonal lattice, and 6, and 6' are vectors joining site i to 
its in-plane neighbours of the &h shell and to its out-of-plane nearest neighbours, 
respectively. J 1  is positive, while the other exchange couplings can have either sign. 

The customary steps in treating modulated spin patterns are the introduction of a 
local quantisation axis [5] spiralling in the plane according to a helix of wavevector Q ,  
and the realisation of the spin operators in terms of bose creation and annihilation 
operators through the well known Dyson-Maleev transformation [6]. 

We are interested in long-wavelength modulations up to order Q6,  so the reduced 
ground-state energy of our model at leading order in 1/S, evaluated on the classical F-H 
transition line 1 + 3j2 + 4j3 = 0, reads 

eG = E G / ~ J ~  s 2 N  = eel i- AIS (2) 

where 
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withj, = J,/J1, and a the in-plane lattice constant. Here we refer to a helical modulation 
whose wavevector lies along an in-plane next-nearest-neighbours row ( Qy = 0), because 
we are interested in the neighbourhood of the F-AF-H triple point where the helix 
configuration is the H~ configuration [5]. A is the long-wavelength contribution to the 
zero-point-motion energy: 

where 
1 i n  rn 

1 
= si, I, dx dy 4x2 Y ) W ,  r>[D(x, Y)2(4x> Y) + j'/3)& Y)b(X, Y) 

- c(x, Y)l (6) 

(7) 

(8) 

(9) 

with 

b(x, y) = cos x cos y + j ,  (cos x cos 3y + 2 cos 2x) + 4j3 cos 2x cos y 

a(x, y) = 2 - cos x cosy + j 2  (6 - 2 cos 2x - cos x cos 3y) 

+ 4j3 (2 - cos 2x cos 2y) 

c(x, y) = cos x cosy + j ,  (cos x cos 3y + 8 cos 2x) + 16j3 cos 2x cos 2y 

&(X, y) = 1 - i(c0s 2y + 2 cos x cosy) + j ,  [l - i(C0S 2x + 2 cos x cos 3y)l 

D(x,y) = [E(X,Y)(&(X,Y) + 3 j ' ) ] p 2 .  

+ j ,  [ 1 - Q(c0s 4y + 2 cos 2x cos 2y)l (10) 

(11) 

Equation (11) results from integration over the z coordinate. Equation (2) can be 
ordered in powers of Q as follows: 

eG = eo + e4Qi  + e,Q;. 

Q, = (-2e4/3e6)"*. (13) 

(12) 

The possible minimum of eG corresponds to 

It has been proved [3] by a calculation to all orders in 1/S that the Q4 contribution 
becomes negative in the neighbourhood of the F-AF-H triple point, so the H~ helix 
overflows beyond the classical F-H boundary, driven by quantum fluctuations. This 
calculation is consistent under the hypothesis that the wavevector of the quantum 
helix is small. An indirect argument in favour of this assumption was provided by 
the comparison of the quantum helix ground-state energy with the antiferromagnetic 
ground-state energy at leading order in 1/S and the stability of the quantum helix with 
respect to the antiferromagnetic configuration was confirmed [7] for any S > 1. 

In any case, a direct calculation of the value of Q was lacking. Here we deal with this 
omission by numerically computing eG of (12) along the F-H classical transition line. The 
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Table 1. Coefficients of Q4 and Q6 in the reduced-energy expansion and values of Q of the 
quantum helix on the classical F-H~ phase boundary ( j z  = - (1 + 4j3)/3) are given for S = 1, 
j ‘  = 0.1, and selected values of j3 .  

0.25 -0.0042 0.0145 0.441 
0.30 -0.0131 0.0229 0.618 
0.35 - 0.0248 0.0389 0.652 
0.40 -0.0416 0.0752 0.607 
0.45 -0.0717 0.1980 0.491 

Table 2. As table 1, but for S = 1 and j’ = 1. 

13 e4 eb  Q 

0.30 -0.0038 0.0107 0.487 
0.35 -0.0117 0.0176 0.666 
0.40 -0.0216 0.0313 0.678 
0.45 - 0.0361 0.0711 0.582 

results are shown in table 1 for S = 1 and j ’  = 0.1 and in table 2 for S = 1 and j ’  = 1. As 
can be seen, e6 is positive-granted that the ground-state energy is minimised by a well 
defined wavevector Q .  Notice that the classical contribution to e6 is negative. This is 
analogous to what happens to the coefficient of Q4 where the classical and the quantum 
contributions have opposite signs: in both cases quantum effects are dominant in the 
neighbourhood of the F-AF-H triple point. 

In the last column of each table we quote the values of Q for selected values ofj, and 
for S = 1, j ’  = 0.1 (table 1) andj‘ = 1 (table 2). As can be seen, the resulting Q is small 
enough to give support to the approach recently elaborated in order to account for 
quantum fluctuations in helimagnets. The non-monotonous behaviour of the latter 
values is not to be treated as very significant because at the corresponding values of j ,  
the antiferromagnetic phase takes over and the expansion in Q6 becomes meaningless. 

In summary, we report here a direct method for evaluating the wavevector of the 
quantum helix in the neighbourhood of the F-AF-H triple point of a hexagonal helimagnet. 
The existence of this quantum helix was proved on the basis of an evaluation of the 
ground-state energy exact to Q4 by a T-matrix resummation of all Q4 contributions. 
Notice that a T-matrix computation at higher order in Q is definitely of no value. 
However, it was found that a substantial quantum effect is already present in the 
contribution at leading order in 1/S. On the basis of this observation we have evaluated 
the contribution to the ground-state energy up to Q6 at leading order in 1/S, so we are 
now able to compute the value of Q for the quantum helix. 

We think that the present approach should be useful for investigating quantum effects 
in other regions of the phase diagram, namely in the neighbourhood of the H ~ - H ~  
transition line, which in the classical approximation is an infinite degeneration line, in the 
sense that an infinite number of inequivalent helices minimise the classical energy of the 
model [9]. We have already proved that suitable additional interactions can transform 
[ 101 this infinite degeneration line into a wedge-shaped intermediate phase where the 
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helix wavevector explores all directions. A similar effect could be introduced by quantum 
fluctuations and we hope that this problem can be studied using an approach similar to 
that presented here. 
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